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1 Introduction

The emergence of decentralised, mobile multi-agent networks, such as distributed
robots, mobile sensor networks, or mobile ad-hoc communications networks,
has imposed new challenges when designing control algorithms. These challenges
are due to the fact that the individual agents have limited computational,
communications, sensing, and mobility resources. In particular, the information flow
between nodes of the network must be taken into account explicitly already at the
design phase, and a number of approaches have been proposed for addressing this
problem, e.g., Jadbabaie et al. (2003), Ji and Egerstedt (2007), Lin et al. (2005),
Martinez et al. (2007), Mesbahi (2005), Olfati-Saber et al. (2007), Tanner et al.
(2007), and Cortes et al. (2006). There is an active research effort underway in the
control and dynamical systems community to formalise these systems and lay out a
foundation for their analysis and synthesis. The problem of the controllability of a
system comprising a large number of autonomous agents in the sense that we aim
to characterise conditions under which some control stations can move the agents
to any desired position, has attracted substantial attention and has been largely
studied over the past years. In this direction (Kobayashi et al., 1978) represents one
of the first papers focused on the controllability issue for decentralised information
structures. A general decentralised systems with two control stations was considered
and a necessary and sufficient condition for controllability was given by combining
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the informations obtained from both the controllability and the observability
matrices. By following this path, (Anderson and Moore, 1981) provided general
rules for designing feedback laws that can be used to stabilise unstable decentralised
systems. As a result of this effort, over the past few years, a distinct area of
research that lies at the intersection of systems theory and graph theory has
emerged. This intersection was first introduced in Corfmat and Morse (1976), where
concepts from graph theory and from geometric theory of linear systems were
used to derive explicit conditions for determining when the closed-loop spectrum
of a multi-channel linear system can be stabilised with decentralised control, and
has been further developed for example in Gong and Aldeen (1997) where a
necessary and sufficient condition for the existence of a decentralised controller
which stabilises a system is stated in terms of fixed modes of a quotient system
identified using graph theory concepts.

Regardless of whether the information flow is generated over communication
channels or through sensory inputs, the underlying geometry is playing an important
role. For example, if an agent is equipped with omnidirectional range sensors, it can
only detect neighbouring agents if they are located in a disk around the agent.
Similarly, if the sensor is a camera, the area becomes a wedge rather than a disk. But,
to make the interaction geometry explicit when designing control laws is not an easy
task, and an alternative view is to treat interactions as purely combinatorial. In other
words, all that matters is whether or not an interaction exists between agents,
and under certain assumptions on the global interaction topology, one can derive
remarkably strong and elegant results. (For a representative sample, see Jadbabaie
et al., 2003; Olfati-Saber et al., 2007; Tanner et al., 2007). What then remains to be
shown is that the actual geometry in fact satisfies the combinatorial assumptions.

In this paper, we continue down this path, by investigating controllability from
a graph-theoretic point-of-view, which was first proposed in Tanner (2004), and
later investigated in Rahmani et al. (2009). In Rahmani et al. (2009), necessary
conditions for controllability were given entirely in terms of the graph topology and,
as such, it provides a starting point for the undertakings in this paper. In particular,
we show that when the network is not completely controllable, the controllable
subspace can be given a graph-theoretic interpretation. What this means is that it
is possible to construct a smaller, completely controllable network (the so-called
controllable relaxed quotient graph) that is equivalent to the original network in
terms of controllable subspaces. This design allows the control designer to focus
directly on a smaller network when producing control laws.

Moreover, it is shown that the dynamics associated with the uncontrollable part
of the network is asymptotically stable for all connected networks. As such, the
controllable relaxed quotient graph is an approximate bisimulation of the original
network, in the sense of Girard and Pappas (2007).

Furthermore, the topic on how to overcome the uncontrollability issue in single
leader symmetric networks is then considered. It is shown that by associating
different weights to nodes, we can modify controllability properties of the network.
In particular, this can be used as a way of breaking existing symmetry-induced lack
of controllability.

Following this approach, the study of the controllability for single-leader systems
is then continued via tools from algebraic graph theory. Our aim is to find a
method for giving a direct interpretation of the controllability of the network from
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a graph-theoretic vantage point. In this sense, we provide a necessary and sufficient
graphical condition through relaxed equitable partition concepts for the system’s
controllability.

Although the main results in this paper provide topological characterisations of
controllability for networked systems, it must be pointed out that it is at this point
not clear if the methods based on relaxed equitable partitions are computationally to
prefer to the standard rank test. However, the contribution of this paper should be
understood as expanding our understanding of the role that the network topology
plays when designing decentralised networked system modelled with the consensus
agreement and the graph-Laplacian theory. In particular, the establishment of
a network interpretation of controllability is useful for incrementally building
networks by avoiding uncontrollability situations directly at the design phase,
without having to explicitly compute other mathematical structures such as the
controllability matrix.

The outline of this paper is as follows: in Section 2, we briefly review the basic
premises behind leader-follower networks and recall some definitions from algebraic
graph theory. In Section 3, we review some results from Rahmani et al. (2009)
and Tanner (2004), allowing us to study controllability of single-leader networks
from a graph-theoretic vantage-point. Relaxed Quotient graphs, obtained through
so-called relaxed equitable partitions of the graph, are the topic of Section 4, while
the uncontrollable part of network is discussed in Section 5. Important results of
this paper are given in Section 6, followed by simulations in Section 7. In Section 8,
we investigate and we solve the problem of the uncontrollability of symmetric
single networks. The main results of this paper are in Section 9 where we provide
a necessary sufficient condition for single leader networks using relaxed equitable
partitions, followed by examples in Section 10.

2 Leader follower consensus networks

In multi-agents systems, it is common to let the nodes of a graph represent the
agents, and to let the arcs in the graph represent the inter-agent communication
links. In fact, this interaction graph plays a central role in representing the
information flow among the agents, and in defining the properties of the system.

Let the undirected graph G be given by the pair (V, E), where V = {1, . . . , n} is
a set of n vertices, and E is a set of edges. We can associate the adjacency matrix
H ∈ R

n×n with G, whose entries satisfy

[H]ij =

{
1 if (i, j) ∈ E
0 otherwise.

Two nodes j and k are neighbours if (j, k) ∈ E , and the set of the neighbours of
the node j is defined as Nj = {k | [H]jk = 1}. The degree of a node is given by the
number of its neighbours, and a graph G is connected if there is a path between
any pair of distinct nodes, where a path i0i1 . . . iS is a finite sequence of nodes such
that ik−1 ∈ Nk with k = 2, 3 . . . S.
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In this paper we let the state of each node, xi, be scalar. (This does not affect
the generality of the derived results.) The standard, consensus algorithm is the
update law

ẋi(t) =
∑
j∈Ni

(xj(t) − xi(t)), (1)

or equivalently ẋ(t) = −Lx(t), where x(t) is the vector with the states of all nodes
at time t, and L is the graph Laplacian. L can be obtained as IIT , where I ∈ R

n×p,
(p being the number of edges), is the incidence matrix of the graph, defined as

[I]kl =


1 if node k is the head of the edge l

−1 if node k is the tail of the edge l

0 otherwise,

given an arbitrarily orientation of the edges.
Under some connectivity conditions, the consensus algorithm is guaranteed to

converge, i.e., limt→+∞ xi(t) = g, i ∈ {1, . . . , n}, where g is a constant depending
on L, and on the initial conditions x0 = x(0) (see for example, Jadbabaie et al.,
2003; Olfati-Saber and Murray, 2003; Olshevsky and Tsitsiklis, 2006).

As in Tanner et al. (2007), Rahmani et al. (2009), and Ji et al. (2006), we imagine
that a subset of the agents have superior sensing, computation, or communication
abilities. We thus partition the node set V into a leader set L of cardinality nl, and
a follower set F of cardinality nf , so that L ∩ F = ∅ and L ∪ F = V .

Leaders differ in their state update law in that they can arbitrarily update their
positions, while the followers execute the agreement procedure (1), and are therefore
controlled by the leaders.

Under the assumption that the first nf agents are followers, and the last nl =
n − nf are leaders, the introduction of leaders in the network induces a partition of
the incidence matrix I as

I =
[If

Il

]
,

where If ∈ R
nf ×p, Il ∈ R

nl×p, and the subscripts f and l denote respectively the
affiliation with the leaders and followers set. As a result, the graph Laplacian L
becomes

L =

[
Lf Lfl

LT
fl Ll

]
,

with Lf = IfIT
f ∈ R

nf ×nf , Ll = IlIT
l ∈ R

nl×nl and Lfl = IfIT
l ∈ R

nf ×nl .
The control system we now consider is the controlled agreement dynamics

(or leader-follower system), in which followers evolve through the Laplacian-based
dynamics

ẋf (t) = −Lfxf (t) − Lflxl(t)
(2)

xl(t) = u(t),

where xf and xl are respectively the state vectors of the followers and the leaders,
and u(t) denotes the exogenous control signal dictated by the leaders.
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3 Controllability of single-leader networks

In this section, we recall some previous results of relevance to the developments in
this paper. To conform to standard notation, we denote with n = nf the number
of followers, we identify matrices A and B with −Lf ∈ R

n×n and −Lfl ∈ R
n×1

respectively, and we will equate xf and xl with x and u. Thus the system (2) becomes

ẋ(t) = Ax(t) + Bu(t), (3)

with controllability matrix

C = [B AB · · · An−1B]. (4)

As A is symmetric it can be written on the form UΛUT , where Λ is the diagonal
matrix of eigenvalues of A and U is the unitary matrix comprised of its pairwise
orthogonal unit eigenvectors. Since B = UUT B, by factoring the matrix U from the
left in equation (4), C assumes the form

C = U [UT B ΛUT B · · · Λn−1UT B].

If one of the columns of U is perpendicular to all the columns of B, then C
will have a row equal to zero and hence be rank deficient. On the other hand, in
the case of one leader, if any two eigenvalues of A are equal, then C will have
two linearly dependent rows, and again, the controllability matrix becomes rank
deficient, as shown in Tanner (2004). Moreover, the system is leader symmetric if
there is a non-identity permutation J (matrix defined over the follower nodes F )
such that JA = AJ . As shown in Rahmani and Mesbahi (2006), in that case the
system (3) is uncontrollable because one of the eigenvectors of A is also orthogonal
to all columns of B.

In this paper, we will focus on networks that are leader symmetric, restricted to
the case when nl = 1, i.e., when there only is one leader present. This is related to the
necessity to use the most simple framework to control a set of followers. By moving
only one ‘super-node’, the leader, we are able to control all the agents belonging to
the network.

Definition 1 (LS2L Network): A connected network G is said to be LS2L
(Leader-Symmetric, Single Leader) if it is leader-symmetric with a single leader.

In the following we give a graph-theoretic interpretation of the controllable part of
a LS2L network starting from the analysis of the controllable subspace.

4 Relaxed equitable partitions and quotient graphs

To obtain the controllable quotient graphs, the notion of a relaxed equitable
partition is needed.

Definition 2 (Relaxed Equitable Partition): A partition π of V , with cells
C1, C2, . . . , Cr is said to be relaxed equitable if each node in Ci has the same
number of neighbours in Cj ∀i, j ∈ {1, . . . , r}, i �= j, with r = |π|, which denotes
the cardinality of the partition.
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Notice that our definition differs from the standard definition of an Equitable
Partition (e.g., Godsil and Royle, 2001) in that we do not insist that the subgraph
induced by each cell should be regular. This means that under our definition, nodes
in a cell need not have the same number of neighbours inside their own cell.

The directed graph G/π with the r cells of π as its vertices and bij edges from the
ith to the jth cells of π is called the relaxed quotient graph, and it has no self-arcs.
Moreover, a partition π with at least one cell with more than one node is said to be
a Nontrivial Relaxed Equitable Partition (NREP).

Definition 3 (Characteristic Vector): A characteristic vector pi ∈ R
n×1 of a

nontrivial cell Ci is defined as:

[pi]j =

{
1 if j ∈ Ci

0 otherwise.

Definition 4 (Characteristic Matrix): A characteristic matrix P ∈ R
n×r of a

partition π of V (G) is a matrix with the characteristic vectors of the cell as its
columns.

An example of a nontrivial relaxed equitable partition is shown in Figure 1(a),
together with its quotient graph in Figure 1(b). The characteristic matrix of this
partition is given by

P =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Figure 1 The relaxed equitable partition π = {1′, 2′, 3′, 4′} (1(a)) with 1′ = {1},
2′ = {2, 3}, 3′ = {4}, 4′ = {5}, and its quotient graph (1(b))

Definition 5 (Leader-Invariant relaxed Equitable Partition (LEP)): By the
Leader-Invariant relaxed Equitable Partition (LEP), we understand the maximal
relaxed equitable partition πM = πF ∪ πL, where πF = {CM

1 , CM
2 , . . . , CM

s } is the
maximal relaxed equitable partition of followers such that the cardinality of πF is
minimal (i.e., has the fewest cells), and the leader L belongs to the singleton cell
CM

s+1 = {L} of the partition πL = {CM
s+1}.



Controllability analysis of multi-agent systems 107

5 Controllability decomposition

We first recall the concepts of the Kalman decomposition for controllability.
Considering the system (3) of a LS2L network, we construct the controllability
matrix (4) and, as previously discussed, we know that it is rank deficient.
The controllability subspace, is equal to the range space of C, (R(C)), and rank(C)
defines the dimension of this subspace.

Consider now any basis for this subspace. Let d = rank(C) and let
(p1, p2, . . . , pd) be the orthogonal, unit length vectors of this basis. We can now use
these vectors to obtain the first d columns of the transformation matrix T :

T =
[
p1 p2 . . . pd . . .

]
.

As T must be an n × n square matrix, we use then n − d orthogonal, unit
length vectors of the basis belonging to subspace R⊥(C) to produce T .
Let (pd+1, pd+2, . . . , pn) be these vectors. We thus have

T =

 p1 | p2 | · · · | pd︸ ︷︷ ︸ pd+1 | pd+2 | . . . | pn︸ ︷︷ ︸
basis of controllable basis of the complement of

subspace the controllable subspace


which is non singular, producing the following system:

˙̄x = Ax̄ + Bu, (5)

where

A = T −1AT =

[
Ac 0
0 Auc

]
(6)

B = T −1B =
[
Bc

0

]
(7)

and

x̄ = T −1x =
[

x̄c

x̄uc

]
. (8)

Here the subscripts c and uc refer to the controllable and uncontrollable parts
respectively.

The reason why A in the decomposition equation (6) takes on this form,
i.e., that A is block diagonal, follows directly from the fact that A = AT and T is
orthonormal, i.e.,

A
T

= (T −1 A T )T = T −1AT T = T −1AT = A.

As a result, we can decouple the system into two different subsystems, namely

˙̄xc = Acx̄c + Bcu (9)

for the controllable part of the network, and

˙̄xuc = Aucx̄uc (10)

for the uncontrollable part.
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Proposition 1: Let G be a single leader network with dynamics described by
equation (3). Its uncontrollable subsystem (10) is always asymptotically stable, i.e.,

lim
t→∞ x̄uc(t) = 0.

Proof: Since we apply a similarity transformation T to A, this does not change its
eigenvalues. So we need to prove that A is negative definite, which follows from the
fact that Lf is positive definite, as shown in Ji et al. (2006). �

Proposition 2 (Range space of C): Let G be a LS2L network with dynamics
described by equation (3), and let πM be its LEP. The range space of C corresponds
to the spanning set of the characteristic vectors of πF , i.e.,

R(C) = span




E1

0
0
...
0




0

E2
0
...
0

 · · ·


0
0
...
0
Es




where Ei is a column vector of ones, with ri = |CM

i | components.

Proof: We denote by ri the cardinality of each set CM
i of the partition πF of G,

and we now consider the graph G′ in which the first r1 vertices belong to CM
1 , the

second r2 vertices belong to CM
2 , and so on. Let L′ be the graph Laplacian of G′

and P (G/πF ) ∈ R
n×r be the characteristic matrix of G/πF . Recalling Definition 4,

in this case we have

P (G/πF ) =


E1 0 0
0 E2 0

0 0 · · ·
...

...
... 0

0 0 Es

 (11)

where Ei ∈ R
ri×1 is a vector with ones in each position. Now, since A′ = −L′

f is
symmetric it can be rewritten as a block matrix:

A′ =



A′
11 A′

12 · · · A′
1,s

A′
21 A′

22 · · · A′
2,s

...
. . .

...
...

. . .
...

A′
s,1 . . . . . . A′

s,s

, (12)

where each diagonal submatrix A′
ii ∈ R

ri×ri represents the set CM
i , and each other

submatrix A′
ij ∈ R

ri×rj represents the connections between nodes belonging to set
CM

i and CM
j . From Definition 2, for each submatrix A′

ij , we have

rj∑
k=1

ai�k =
rj∑

k=1

aj�k ∀ i�, j� ∈ CM
i . (13)
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Moreover, B′ = −L′
fl has always the form

B′ =


0
...
0
E

 (14)

with E column vectors of ones with l elements, where l denotes the number of
the neighbours of the leader. The controllability matrix can thus be recursively
calculated as

C =
[
B′ A′ · B′ A′ · A′B′ · · · A′ · A′(n−2)B′], (15)

and, recalling that the row sum of blocks Aij are constant, it becomes

C =


0 0 · · · Ĉ1n

...
... · · · Ĉ2n

0
... · · ·

...
E Ĉs2 · · · Ĉsn

 Ĉij = fijEi

fij ∈ R
. (16)

So the range space of C equation (16) is such that

R(C) = span




E1
0
0
...
0




0

E2
0
...
0

 · · ·


0
0
...
0
Es




which corresponds to the spanning set of the characteristic vectors of πF , which
proves the proposition. �

Corollary 1: The dimension of the controllable subspace of the network G is equal
to the cardinality of πF of its LEP.

Proof: The range space of C is equal to the spanning set of the characteristic
vectors of πF . It follows that dim(R(C)), is equal to the number of the columns of
its characteristic matrix, i.e., the number of sets of πF . �

Remark 1: As shown in Rahmani and Mesbahi (2006), if the network is LS2L,
it is not completely controllable. Then the LEP is nontrivial, i.e., not all cells are
singletons.

Corollary 2: Agents of the network belonging to each set CM
i of πF starting from

the same point will move together, i.e., ∀ t > 0,

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)

 ⇒


x1(t) = · · · = xr1(t)

...
xn−rs

(t) = · · · = xn(t)
.
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Proof: This fact follows directly from the invariance of the controllable subspace.
However, it is interesting to derive the same result in a different way, which
illustrates more directly its significance. A possible choice for R(C)⊥ is to take
vectors with column sums to zero and with blocks Pi ∈ R

ri×(ri−1) in the position
associate to each block Ei of R(C), such that

Pi =
[
Iri−1

−1T

]
ri×(ri−1)

.

In other words we have that R(C)⊥ =
⋃s

i=1 Ri where

R1 = span




E⊥
11

0
...
0

,


E⊥

12

0
...
0

 , · · ·


E⊥

1r1−1

0
...
0




R2 = span




0
E⊥

21
...
0

 ,


0

E⊥
22
...
0

 , · · ·


0

E⊥
1r2−1
...
0




and so on, where

E⊥
i1 =


P
0
0
...
0

, E⊥
i2 =


0
P
0
...
0

, · · · with P ∈ R
2×1 s.t. P =

[
1

−1

]
.

It follows that for every block Ei, i.e., for every set CM
i , we have, ∀t > 0

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)

 ⇒


x1(t) = · · · = xr1(t)

...
xn−rs

(t) = · · · = xn(t)

which proves the corollary. �

6 Approximate bisimulation through relaxed equitable partition graph

A common theme in the theory of distributed processes and in systems and control
theory is to characterise systems which are ‘externally equivalent’. The intuitive idea
is that we only want to distinguish between two systems if the distinction can be
detected by an external system interacting with these systems. This is a fundamental
notion in design, allowing us to switch between externally equivalent representations
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of the same system and to reduce subsystems to externally equivalent but simpler
subsystems.

A crucial notion in this sense is the concept of bisimulation. The notion of
bisimulation, introduced in Milner (1989), and which has been further developed for
example, in Haghverdi et al. (2002), Girard and Pappas (2005), and Girard et al.
(2006), is one such formal notion of abstraction that has been used for reducing the
complexity of finite state systems and expresses when a subprocess can be considered
to be externally equivalent to another (hopefully simpler) process.

Bisimulation is a concept of equivalence that has become a useful tool in
the analysis of concurrent processes. It also reflects classical notions in systems
and control theory such that state – space equivalence of dynamical systems, and
especially the reduction of a dynamical system to an equivalent system with minimal
state – space dimension.

In the following we apply concepts of approximate bisimulations to multi agent
systems. We aim to find a subgraph of the original graph that we can use to
move all the agents belonging to the network, and we aim to give a graphic and
immediate interpretation to this one using relaxed equitable partitions. Indeed,
since the uncontrollable part of the system is always asymptotically stable, we can
simplify the original network with one which corresponds exactly to the controllable
part of the network. In order to move all the agents of the network, it is possible to
control this smaller entity and ignoring the uncontrollable part. Moreover, we will
prove that this controllable subgraph can be found by investigating the network
through relaxed equitable partitions.

Consider the controllability decomposition (6)–(8) with

T = [Tc | Tuc] = [T 1
c T 2

c · · · T s
c | Tuc], (17)

T −1 =
[ T invc

T invuc

]
=


T 1invc

T 2invc

...
T sinvc

T invuc

, (18)

where Tc denote the first s = dim(R(C)) columns of T , and T invc the first s rows
of T −1.

Therefore

Ac = T invc A Tc, (19)

and

Bc = T invc B, (20)

which allows us to state the following lemma.

Lemma 1: Let G be a LS2L network, with dynamics described by equation (3), and
let πM be its LEP. If Tc corresponds to the characteristic matrix of the LEP, then
T invc equation (18) is such that

T iinvc =
(T i

c )T

|CM
i | . (21)
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Proof: We know that T −1 = T inv = (T T T )−1 T T with T = [Tc | Tuc] and, as we
proved in Proposition 2, Tc correspond to the characteristic matrix of πF . Since
vectors of Tc and Tuc are orthogonal, the matrix T � = (T T T ) is such that:

T � =

[
T T

c Tc 0

0 T T
uc Tuc

]
=

[
T �

11 0

0 T �
22

]
,

where T �
11 ∈ R

s×s is a diagonal matrix with [T �
11]ii = |CM

i |, and T �
22 ∈ R

(n−s)×(n−s).
T � is a diagonal block matrix, and its inverse can be easily evaluated:

(T �)−1 =

[
(T T

c Tc)−1 0

0 (T T
uc Tuc)−1

]
=



1
|CM

1 | 0 0 0 0 0

0
. . . 0 0 0 0

0 0
1

|CM
s | 0 0 0

0 0 0 (T T
uc Tuc)−1


.

It follows that

T −1 = (T �)−1
[T T

c

T T
uc

]
=



(T 1
c )T

|CM
1 |

(T 2
c )T

|CM
2 |
...

(T s
c )T

|CM
s |

T invuc


. (22)

Hence

T iinvc =
(T i

c )T

|CM
i | , (23)

which proves the lemma. �

Theorem 1 (Controllable subspace): Let G be a LS2L network with dynamics (3),
and let πM be its LEP. The controllable subspace of G corresponds to the quotient
graph G/πM .

Proof: It is well known that L ∈ R
(n+1)×(n+1) is such that L = D − H, where D

is the diagonal degree matrix and H is the adjacency matrix. Hence A = −Lf =
−(Df − Hf ), where Df and Hf are respectively obtained by taking the first n rows
and columns of D and H. We have

A = −(Df − Hf ) where

{
Df = T −1Df T
Hf = T −1Hf T
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and the matrix Ac in equation (19) can be calculated as

Ac = −(Dfc − Hfc), (24)

where

Dfc = T invcDf Tc (25)

Hfc = T invcHf Tc. (26)

Since Tc is equal to the characteristic matrix of πF , and T invc = (T T
c Tc)−1T T

c

satisfies (21), Dfc results as a diagonal matrix s.t.

[Dfc]ii =

∑zj

k=zi+1 −akk

|CM
i | =

∑
deg(CM

i )
|CM

i | with j = i + 1, zk =
k−1∑
p=0

rp, r0 = 0,

where −akk is the degree of the node k and
∑

deg(CM
i ) is the sum of the degree

of the |CM
i | nodes belonging to the cell CM

i . Furthermore, in the same way, each
entry ij of the matrix Hfc in equation (26) results as the sum of arcs between nodes
belonging to the cell CM

i and the nodes belonging to the cell CM
j (we will name this

integer as |Nij |) divided by the cardinality of the cell CM
i , i.e.,

[Hfc]ij =
|Nij |
|CM

i | .

Recalling Definition 2, if i �= j, [Hfc]ij = bij . Now, the degree of each node can
be separated into two different values: the degree due to links to other nodes of
the same cell (which we will name degin) and the degree due to links to nodes of
other cells (degout) with deg = degin + degout and that

∑
degin(CM

i ) = |Nii|, for
each diagonal entry of equation (24) we thus have

[Ac]ii = −
∑

degin(CM
i ) +

∑
degout(C

M
i )

|CM
i | +

|Nii|
|CM

i | = −
∑

degout(C
M
i )

|CM
i | = −∆(CM

i )

where ∆(CM
i ) is the degree of the cell CM

i . That follows directly from the definition
of relaxed equitable partition which require that nodes inside cell Ci have the same
number of neighbours inside cell Cj with i �= j. Hence,

Ac = −(Dfc − Hfc) =


−∆(CM

1 ) b12 · · · b1s

b21 −∆(CM
2 ) · · · b2s

...
. . .

...
bs1 · · · · · · −∆(CM

s )

. (27)

It follows that Ac in equation (24) corresponds to −Lf (G/πM ).
Moreover, with B as in equation (14), the decomposition (20) is such that each

entry b̄i of the matrix Bc satisfies

b̄i =

∑ri+r(i+1)

k=ri
bk

|CM
i |
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i.e.,

b̄i =

{
1 if CM

i is connected to the leader

0 otherwise.

If we define X as the number of sets |CM
i | connected with the leader, we can

conclude that the matrix[
−Ac −Bc

− BT
c X

]
(28)

corresponds exactly to L(G/πM ) (defined with respect to the incidence matrix
instead of the adjacency matrix, as is standard for directed graphs), which proves
the theorem. �

7 A simulation study

As an application of the proposed method, consider a network consisting of nine
followers and one leader. As usual, leaders and followers differ in that leaders move
autonomously and ‘herd’ the followers, which move using the consensus protocol.
Assume moreover that the followers are layed out in a grid, as in Figure 2(a).
Since such structure is a LS2L network, it is not completely controllable, and for
this reason we cannot move it from any initial point to any arbitrarily point.

Figure 2 The graph of the network and the relaxed quotient graph corresponding
to controllable part (b)

Consider now a translation of the network: due to the fact that the system is not
completely controllable, this movement is not feasible. In Figure 3(a)–(d), we report
some steps of a translation process of the entire network, and in Figure 3(e)–(h),
we report the same steps of the same translation, but applied to its quotient graph
shown in Figure 2(b).

We suppose that an external unit tells the leader the trajectory to follow, or
that the leader has planning capabilities in order to solve the planning problem.
Starting from the initial situation of Figure 3(a), leader moves along x axis
dragging followers, whose disposition (Figure 3(c) and (d)) asymptotically converge
to the controllable quotient graph (Figure 3(g) and (h)). This result emphasise the
importance of a graph theoretic characterisation of the controllable part of the
network, which enables the designer to focus directly on the smaller, approximate
bisimulation of the original graph, when designing control laws.
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Figure 3 Translation process of the entire network (a, b, c, d), and of its quotient
graph (e, f, g, h)

8 Breaking the symmetry

Coordinating the agents towards a group objective is one of the most common
tasks for multi-agent networks. This is a task for the leader and its ability to do
so depends on the controllability properties of the networks considered. For this
reason, now, given an uncontrollable network, one could ask the question of whether
or not it is possible to somehow make this network controllable. This is the topic
under consideration in this section, where we investigating how to change the
controllability properties of LS2L multi-agent systems. As previously discussed in
Section 3, a LS2L network is not completely controllable. What this means is that
we cannot move nodes from any initial point to an arbitrary point (see Section 7).
To overcome this, one can associate weights with the different nodes in the network
that in effect means that different gains are applied at different locations, as a way of
breaking the symmetry-induced lack of complete controllability. We formalise this
observation in the following problem:

Problem 1 (Controllability of a LS2L network): Given a LS2L network G with
dynamics described by equation (3), find a matrix Γ such that the new system
ẋ = ΓAx + ΓBu is completely controllable.

It is clear that solutions of Problem 1 are not unique. However we can state the
following theorem.

Theorem 2 (Breaking symmetry): Let G be a LS2L network with dynamics
described by equation (3), and let πM be its LEP. Let Γ be a diagonal matrix of
γ1, γ2, . . . , γn with γi �= γj ∀ i, j ∈ {1, . . . , n}, i �= j, then the system

ẋ = ΓAx + ΓBu (29)

is completely controllable.
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Proof: In Proposition 2 we proved that the range space of C corresponds to the
spanning set of the characteristic vectors of πF , i.e.,

R(C) = span




E1

0
0
...
0




0

E2

0
...
0

 · · ·


0
0
...
0
Es




(30)

where Ei is a column vector of ones, with ri = |CM
i | components.

Let now Γ be a diagonal matrix of γ1, γ2, . . . , γn, i.e.,

Γ =


γ1 0 · · · 0
0 γ2 0
...

. . .
...

0 · · · · · · γn

.

If γ’s are chosen different inside each set CM
i , i.e.,

γri+p �= γri+k ∀p, k ∈ {1, . . . , rj}, p �= k (31)

with 
r0 = 0

i ∈ {0, 1, . . . , r − 1}
j = i + 1

the controllability matrix C′ of the system (29) become

C ′ =

 0 · · · f1n

0
. . .

...
E · · · fnn


fij ∈ R s.t.
fkn �= fjn

∀k, j ∈ {1, . . . , n},

k �= j

. (32)

The reason why the controllability matrix C ′ is structured as in equation (32) follows
because the matrix Γ breaks the constant row sum condition inside cells in the the
matrix ΓA and the non-zero values of ΓB result all different. Therefore the range
space of C ′ is

R(C ′) = span




1
0
0
...
0




0
1
0
...
0

 · · ·


0
0
...
0
1




(33)

and we can conclude that the system (29) is completely controllable because
R(C ′) = R

n. �
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9 A graph characterisation of controllability of single leader networks

The problem of investigating the controllability properties of the leader-follower
networks from a graph-theoretic point of view has been particularly studied in
the last years. In Rahmani and Mesbahi (2006) a sufficient condition for the
uncontrollability of a single leader network is given. As previously shown, if the
system is leader-symmetric then the controllability matrix become rank deficient and
the system is uncontrollable. Moreover, a similar controllability approach can be
found in Rahmani et al. (2009), where necessary conditions are given completely in
terms of the graph topology.

In this section, we continue down this path and we provide a necessary and
sufficient condition for the controllability of a single leader network.

Theorem 3 (Controllability of a single leader network): Let G be a single leader
network with dynamics described by equation (3), and let πM be its LEP. The system
is completely controllable if and only if the cardinality of πF is equal to n, i.e., all
the cells CM

i are singleton.

Proof of sufficiency: We use the same approach as in Proposition 2. We denote by
ri = 1 (s = n) the cardinality of each set CM

i of the partition πF of G, and we now
consider the graph G′ in which the first r1 vertices belong to CM

1 , the second r2
vertices belong to CM

2 , and so on. Let L′ be the graph Laplacian of G′. Now, since
A′ = −L′

f is symmetric it can be rewritten as a block matrix:

A′ =



A′
11 A′

12 · · · A′
1,s

A′
21 A′

22 · · · A′
2,s

...
. . .

...
...

. . .
...

A′
s,1 . . . . . . A′

s,s

,

where each diagonal submatrix A′
ii ∈ R

1×1 represents the set CM
i , and each other

submatrix A′
ij ∈ R

1×1 represents the connections between nodes belonging to set
CM

i and CM
j . Since, B′ = −L′

fl, it has the form

B′ =


0
...
0
E

 (34)

where E is a column vector of ones with l elements, where l denotes number of
the neighbours of the leader. The controllability matrix can thus be recursively
calculated as

C = [B′ A′ · B′ A′ · A′B′ · · · A′ · A′(n−2)B′],
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and it becomes

C =

0 · · · f1n

0
. . .

...
E · · · fnn


fij ∈ R s.t.
fkn �= fjn

∀k, j ∈ {1, . . . , n},

k �= j

. (35)

Hence the range space of C is

R(C) = span




1
0
0
...
0




0
1
0
...
0

 · · ·


0
0
...
0
1




(36)

and we can conclude that the network G is completely controllable because
R(C) = R

n. �

Proof of necessity: We know that equation (3) is completely controllable if and
only if its controllability matrix has full rank. This means that C should be as in
equation (35) and R(C) = R

n, i.e., as in equation (36).
We now define two new matrices ÂL ∈ R

n×(n−l) and ÂR ∈ R
n×l (l denotes

number of the neighbours of the leader) such that [ÂL ÂR] = A, i.e.,

A = [ÂL ÂR] =


Â1

L Â1
R

Â2
L Â2

R
...

...

Ân
L Ân

R

. (37)

As usual, we evaluate the controllability matrix as

C = [B A · B A · AB · · · A · A(n−2)B],

and it becomes

C =


0
0
...
1

Â1
R E

Â2
R E
...

Ân
R E

[Â1
L Â1

R] C2

[Â2
L Â2

R] C2
...

[Ân
L Ân

R] C2

· · ·

· · ·

[Â1
L Â1

R] Cn−1

[Â2
L Â2

R] Cn−1
...

[Ân
L Ân

R] Cn−1


︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
C1 C2 C3 Cn

. (38)

Since B is as in equation (34), and Ci, with i ∈ {1, 2, . . . , n}, represents the ith
column of C, it is clear that equation (38) assumes the form as in equation (35) if

n−l∑
k=1

[ÂL]ik �=
n−l∑
k=1

[ÂL]jk

n∑
k=n−l+1

[ÂR]ik �=
n∑

k=n−l+1

[ÂR]jk

∀i, j ∈ {1, . . . , n}, i �= j. (39)
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The condition (39) assures that all the cells CM
i of the LEP of G are singletons and

the theorem follows. �

Theorem 3 provides a method to identify controllability properties of multi-agent
systems with a single leader. In an uncontrollable multi-agent system, nodes
in the same cell are not distinguishable from the leader’s point of view. This
means, that agents belonging to the same cell of the LEP, if identically initialised
remain undistinguished to leader throughout the system evolution (see Corollary 2).
It follows that the cardinality of πF of the LEP πM in a completely controllable
multi-agent system with a single leader is equal to n. For this reason it represents
an important result in investigating the controllability of multi agent systems with a
single leader. In particular it allows us to have a direct graph theoretic interpretation
of the controllability of the network using relaxed equitable partition.

10 Examples

As an example consider a simple network G with three followers and only one leader
(Figure 4(a)). Since the cardinality of πF of its LEP πM is equal to 1, the network has
a controllable subspace of the same dimension. Using Relaxed Equitable Partitions
concepts we can investigate on the variations of the controllability properties related
to the modifications of the topology of the original graph. For this reason we first
cut the edge from node 1 to the leader (Figure 4(b)); since the LEP of the new graph
is composed only by singletons cell, for the Theorem 3 it is completely controllable.

Figure 4 A LS2L network (a) and its modifications (b, c) (see online version for colours)

Consider now the graph in Figure 4(b). As the result of the connection of node 3
with node 1 (Figure 4(c)), we obtain a LEP composed by two cells (excluding that
of the leader): a cell with node 3 and node 2, and a singleton cell with node 1.
The controllable subspace has a dimension 2. Agents 2 and 3 if identically initialised
remain undistinguished to leader throughout the system evolution and will collapse
into a single node.

11 Conclusions

The problem of controllability of a group of autonomous agents has been
considered. A leader-follower linear consensus network has been used to model
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the interactions among the nodes. It has been shown that when the network is
not completely controllable, we can give a graphic theoretic interpretation to the
controllability subspace, and that it is possible to construct a smaller completely
controllable network that is controllable-equivalent to the original one.

Moreover, it has been shown that the uncontrollability in LS2L networks can be
overcome associating weights with the different nodes as a way for breaking the
symmetry in the agents layout.

At last, it has been given a necessary a sufficient condition for the controllability
of single leader multi-agent networks in term of the graph topology. In particular,
a direct interpretation of the controllability properties can be given by investigating
the networks through relaxed equitable partitions.
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