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Abstract: This paper studies left invertibility of single-output discrete-time quantized linear systems.
Quantized outputs are generated according to a given partition of the state-space, while inputs are
sequences on a finite alphabet. Left invertibility deals with the possibility of recovering unknown inputs
from the only knowledge of the outputs. It is reduced, under suitable conditions, to left D-invertibility:
while left invertibility takes into account membership to sets of a given partition, left D-invertibility
considers only membership to a single set, and is easily (and algorithmically) detectable. Our main result
is a sufficient condition for the equivalence between left invertibility and left D-invertibility in MISO
system. In unidimensional systems the equivalence is valid except at most a finite (and computable)
number of cases. These results allows the effective detection of left invertibility by means of left D-
invertibility, which is algorithmically detectable. An example with effective computations is presented
to show the application of the proposed method.
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1. INTRODUCTION

Left invertibility is an important problem of systems theory and
deals with the possibility of recovering unknown inputs applied
to the system from the knowledge of the outputs. We investigate
left invertibility of discrete–time I/O quantized Multi-Input
Single-Output (MISO) linear systems. In particular, inputs are
arbitrary sequences of symbols in a finite alphabet: each symbol
is associated to an action on the system. Information available
on the system is represented by sequences of output values,
generated by the system evolution according to a given partition
of the state-space (uniform quantization here).

The mathematical operation of quantization has practical mo-
tivations in the following two classes of problems: the control
with discrete sensors and/or actuators, which have finite reso-
lution, and the control under communication constraints, like
channels with limited capacity. Quantization has been studied
since the late fifties (see for instance Bertram [1958], Kalman
[1956], Szanier [1994]). Sampled-data systems and signal pro-
cessing have been the first field of interest for quantization
(Curry [1970]), while the idea of quantization as a nonlinear-
ity pervades recent contributions on the subject (Delchamps
[1990], Fu [2005]). The definition of a dynamic quantization
scheme (Tatikonda [2004], Brockett [2000]) has been one of
the most significant methodology introduced in the recent liter-
ature. In recent years there has been also a considerable amount
of work on quantized control systems stimulated by the growing
number of applications involving “networked” control systems,
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interconnected through channels of limited capacity (see e.g.
Bicchi [1992], Carli [2008], Nair [2007], Tatikonda [2004]).

As to left invertibility, literature shows many works on both
invertibility of linear (Brockett [1965], Silverman [1969]) and
nonlinear systems. In Hirschorn [1979], Hirschorn2 [1979],
Respondek [1990] invertibility of nonlinear continuous-time
systems and in Fliess [1986] the notion of differential algebraic
invertibility are discussed. A good compendium of left and right
invertibility of both linear and nonlinear systems can be found
in Respondek [2001]. In Tanwani [2008], Vu [2006] the left
invertibility problem for switched systems is discussed. Appli-
cations of left invertibility include fault detection in Supervi-
sory Control and Data Acquisition (SCADA) systems, system
identification, and cryptography. The applicability of system
inversion to fault detection in linear time-invariant systems was
first demonstrated in Szigeti [2001]. In Edelmayer [2004] it is
shown how fault detection of both linear and nonlinear systems
can be viewed as an input reconstruction process. Moreover, dy-
namic inversion methods were successfully applied to many in-
teresting problems in aerospace and aviation (Goodwin [2002],
Krupadanam [2002]). As to applications to cryptography, it
deals with the general construction of cryptosystems based on
chaos (see Dubbini [2010] and reference therein).

The intent of this paper is to show that the analysis of left
invertibility can be substituted, under suitable conditions, by
the analysis of a stronger notion, left D-invertibility. While
left invertibility takes in account whether two states are in the
same element of a given partition, left D-invertibility considers
only the membership to a single set. For this reason left D-
invertibility is easy to check, and it is algorithmically detectable
(Theorem 1). The main results of this paper state condition
under which left invertibility and left D-invertibility of MISO
systems are equivalent. In particular, in unidimensional sys-
tems the two notions are equivalent except at most a finite



number of cases (Theorem 5); in a MISO system uniform
left D-invertibility and uniform left invertibility are (exactly)
equivalent when the dynamic matrix has at least a trascendental
eigenvalue (Corollary 1). The main mathematical tool used is
a generalization of a (number theoretic) theorem of Kronecker,
which has to do with density in the unit cube of the fractional
parts of real numbers. By means of a particular construction the
problem of “turning” left D-invertibility into left invertibility
can be handled with a Kronecker-type density theorem.

The paper is organized as follows: section 2 contains the for-
malization of the problem under study, and some preliminary
results. Section 3 shows the procedure to prove the equivalence
between left D-invertibility and left invertibility and states the
equivalence results for unidimensional systems. Section 4 con-
cerns MISO system, applying results obtained in section 3 to
prove equivalence results for this class of systems. In section
5 explicit calculations are done in a comprehensive example.
Conclusions and future work are explained in section 6.

2. LEFT INVERTIBILITY AND FIRST RESULTS

Notations: We indicate with ei the i-th vector of the canonical
basis of Rd ; with 〈v1, . . . ,vi〉 the linear subspace generated by
the vectors v1, . . . ,vi ∈ Rd ; with πp the projection on the first
p components; with b·c the floor function; with f rac(·) the
fractional part. ♦
Definition 1. The uniform partition of rate δ of R is

P = {Pi}i∈Z = { [iδ ,(i+1)δ [ }i∈Z . ♦

In this paper we study discrete-time, time-invariant, output-
quantized Multi-Input Single Output (MISO) linear systems of
the form {

x(k+1) = Ax(k)+Bu(k)
y(k) = qP

(
Cx(k)

) (1)

where x(k)∈Rd is the state, y(k)∈Z is the output, u(k)∈U ⊂
Rm is the input, and A,B,C are matrices of suitable dimensions.
The map qP : R → Z is induced by the uniform partition
P = {Pi}i∈Z of R of rate δ through qP : (x ∈Pi) 7→ i and
will be referred to as the output quantizer. We assume that U is
a finite set of cardinality n.
Remark 1. Suitably changing the bases, we can suppose the
system (1) of the form{

x(k+1) = Ax(k)+Bu(k)
y(k) = bπ1x(k)c. ♦ (2)

Together with the system (2), we define two “auxiliary” sys-
tems, the doubled system and the difference system: the former
is useful to have a different point of view on left invertibility,
while the latter leads to the definition of left D-invertibility.
Definition 2. The doubled system is

X(k+1) =
(

A 0
0 A

)
X(k)+

(
B 0
0 B

)
U(k), (3)

where X(k) =
(

x(k)
x′(k)

)
∈R2d , U(k) =

(
u(k)
u′(k)

)
∈U ×U .♦

Definition 3. The difference system is
z(k+1) = Az(k)+Bv(k) (4)

where z(k) ∈ Rd , v(k) ∈U −U = {u−u′ : u,u′ ∈U }. ♦

Roughly speaking, the definition of left invertibility requires
that any difference in the input must result in a difference in

the following output symbols, at most in a time equal to the
invertibility time.
Definition 4. A pair of input strings {u(i)}i∈N, {u′(i)}i∈N is
uniformly distinguishable in k steps if there exists l ∈ N such
that ∀x(0),x′(0) ∈ Rd and ∀m > l the following holds for the
correspondent trajectories:

u(m) 6= u′(m) ⇒
[y(m+1), . . . ,y(m+ k)] 6= [y′(m+1), . . . ,y′(m+ k)],

(outputs y(i) are referred to the system (2) with initial condition
x(0) and inputs u(i), while outputs y′(i) are referred to the
system (2) with initial condition x′(0) and inputs u′(i)). ♦
Definition 5. The system (2) is uniformly left invertible (ULI)
in k steps if every pair of distinct input strings is uniformly
distinguishable in k steps after a time l, with k, l constant. ♦

The motivation of such a definition is that, for a ULI system, it
is possible to recover the input string until instant m observ-
ing the output string until instant m + k. We now introduce
left D-invertibility, and its “finite resolution” version, left Dε -
invertibility: they both are based on the dynamics of the dif-
ference system. The difference system represents at any instant
the difference between the two states z(k) = x(k)− x′(k) when
the input symbols u(k)−u′(k) = v(k) are performed. So we are
interested in understanding the conditions under which

z(k) 6∈ ]−1,1[ × 〈e2, . . . ,ed〉
for some k. This implies that in system (2) y(k) 6= y′(k) (the
converse is not true).
Definition 6. A pair of input strings {u(i)}i∈N, {u′(i)}i∈N is
uniformly D-distinguishable in k steps if there exists l ∈N such
that ∀x(0),x′(0) ∈ Rd and ∀m > l the following holds:
v(m) 6= 0 ⇒ [z(m+1), . . . ,z(m+k)] 6∈ ]−1,1[ × . . .× ]−1,1[︸ ︷︷ ︸

k times

,

where the z(i)’s are generated by the difference system with
initial condition z(0) = x(0)− x′(0) and inputs v(i) = u(i)−
u′(i). ♦
Definition 7. A system of type (2) is uniformly left D-invertible
(ULDI) in k steps if every pair of distinct input strings is
uniformly D-distinguishable in k steps after a time l, with k, l
constant. ♦
Definition 8. Fix ε ≥ 0. A pair of input strings is uniformly
Dε -distinguishable in k steps if the conditions of Definition
6 are satisfied with ]− 1 + ε,1− ε[ instead of ]− 1,1[. A
system of type (2) is uniformly left Dε -invertible (ULDε I) in
k steps if every pair of distinct input strings is uniformly Dε -
distinguishable in k steps after a time l, with k, l constant. ♦
Definition 9. Define the quantization-diagonal set Q relative to
the system (2) to be the set of pairs of states (x,x′) ∈ R2d such
that bπ1xc= bπ1x′c i.e. Q contains all pairs of states that are in
the same element of the partition P . ♦
Definition 10. Define Qε , for ε ≥ 0, to be the set of pairs
of states (x,x′) ∈ R2d such that x′ − x ∈ (]− 1 + ε,1− ε[)×
〈e2, . . . ,ed〉. ♦

To address invertibility, we are interested in the dynamics of
the doubled system relative to the quantization-diagonal set. If
there exists sequences {u(k)},{u′(k)}, and an initial state in the
quantization-diagonal set such that the corresponding trajectory
of (3) remains in Q, then the two strings of inputs generate the
same output for the system (2). So conditions ensuring that the
state is outside Q for some k will be sought to guarantee left



invertibility. In the same way we are interested in the dynamics
of the difference system relative to the set Qε . For a graphic
illustration of Q and Qε see also fig. 1.
Remark 2. Note that Uniform Left Dε -Invertibility (resp. Uni-
form Left D-Invertibility) means that there do not exist tra-
jectories of arbitrary length in Qε (resp. Q0). Therefore ULDI
implies ULI.

The problem under study is to state conditions for the equiva-
lence between ULDI and ULI of the system (1). This equiva-
lence is important since ULDI is algorithmically checkable:
Theorem 1. Dubbini [2010] Consider the system (2) and sup-
pose that: (i) if λ is an eigenvalue of the matrix A, then |λ | 6=
1; (ii) A does not have an invariant subspace in 〈e2, . . . ,ed〉.
Then, there exists an algorithmic procedure to check left D-
invertibility and find out the invertibility time. ♦

The techniques used in this paper are based on the following
Lemma 1: it involves algebraic conditions based on fractional
parts to guarantee that the presence of a trajectory in Qε implies
the existence of a trajectory in Q.
Definition 11. If X ∈ Qε , define d(X) to be the distance, mea-
sured along the line (the ti’s and s ∈ ]− 1+ ε,1− ε[ are to be
considered fixed)

{[τ, t2, . . . , td ,τ + s, td+2 . . . , t2d ] ∈ R2d : τ ∈ R}
from the set {X ∈ R2d : X1 = Xd+1 = 0}. ♦
Lemma 1. Suppose that there exists a trajectory of the doubled
system {X( j)}J

j=0 ⊂ Qε , such that

f rac
(

d(X( j))√
2

)
< ε, (5)

for every j = 1, . . . ,J. Then the system (2) is not ULI in J steps.

Proof: First observe that f rac
(

d(X( j))√
2

)
= 0 if and only if

[X1( j),Xd+1( j)] belongs to some translation of [0,1]× [0,1]
along the diagonal of R2 that is entirely included in Q, i.e. a
translation that takes [0,1]× [0,1] to the “bottom-left boundary”
of a square of Q. So, if X( j) ∈ Qε and f rac

(
d(X( j))√

2

)
< ε ,

then X( j) ∈ Q. Therefore, if the relations (5) are satisfied for
j = 1, . . . ,J, then there exists a proper trajectory of length J
included in Q, and the system is not ULI in J steps. ♦
Keeping in mind Lemma 1, we define a quantity ε(A) de-
pending only on the dynamic matrix A in such a way that, if
ε(A)< ε , then ULI implies ULDε I.
Definition 12. Given a MISO system of type (2), define

ε(A) = sup
ζ j∈Rd

sup
J∈N

inf
x∈Rd

max
j∈[1,J]

[
f rac

(
π1(A jx+ζ j)

)]
. ♦ (6)

Let us explain the meaning of ε(A). Suppose we are given any
trajectory {X( j)} j∈N, included in Qε , of the doubled system
(3). This trajectory has the form

X( j) =
(

x( j)
x′( j)

)
=

(
A jx(0)+A j−1u(1)+ . . .+u( j)

A jx′(0)+A j−1u′(1)+ . . .+u′( j)

)
.

We then add the same generic parameter x ∈ Rd to the first and
the second d components of the initial condition (which does
not affect the membership to Qε ), and consider constant every
quantity which does not depend on the parameter:

X( j) =
(

A j(x+ x(0))+ . . .+u( j)
A j(x+ x′(0))+ . . .+u′( j)

)
=

(
A jx+ζ j
A jx+ζ

′
j

)
(7)

So, with a look at Lemma 1, we can investigate ULI looking at
fractional parts of π1(A jx+ζ j), for j = 1, . . . ,J, for every J ∈N.
Taking the sup on ζl in the Definition 12 we are not considering
the effect of the inputs, so ε(A) is the smallest ε such that for
every J ∈ N there exists a trajectory of the system (2) such that

f rac
(
π1(A jx+ζ j)

)
< ε ⇒ f rac

(
d(X( j))√

2

)
< ε j = 1 . . . ,J.

Lemma 1 indicates that ε(A) is the right quantity to put in
relation ULDI with ULI:
Proposition 1. Consider the system (2). Then ULI implies
ULDε(A)I.

Proof: Suppose that the system (2) is not ULDε(A)I. We prove
that it is not ULI. By ULDε(A)I there exists an arbitrary long tra-
jectory of the doubled system in Qε(A). Following the reasoning
above, we can consider this trajectory of the form (7), and it is
possible to choose the initial state such that f rac(π1X( j)) <
ε(A) by the definition of ε(A) itself, for every j = 1, . . . ,J.
Therefore we can apply Lemma 1 to conclude that the system
is not ULI. ♦

2.1 Mathematical background

Definition 13. The numbers ϑ1, . . . ,ϑM ∈ R are linearly inde-
pendent over Z if for every k1, . . . ,kM ∈ Z the following holds:

k1ϑ1 + . . . ,+kMϑM = 0 ⇒ k1 = . . .= kM = 0. ♦
Theorem 2. (Kronecker). Hardy [1979] If α1, . . . ,αM,1∈R are
linearly independent over Z, then, for every ϑ1, . . . ,ϑM ∈R the
set of points {[ f rac(lα1 +ϑ1), . . . , f rac(lαM +ϑM)] : l ∈ R} is
dense in the unit cube of RM . ♦
Definition 14. A number ρ ∈ C is called algebraic if there ex-
ists a polynomial with integer coefficients R(x) ∈ Z[x] such that
R(ρ) = 0. In this case there exists a unique monic polynomial
R(x) ∈ Z[x] with minimal degree q. R(x) is called the minimal
polynomial of ρ and q its degree. A number ρ ∈ C is called
trascendental if it is not algebraic. ♦

Note that 1,ρ,ρ2, . . . ,ρM are linearly independent if and only
if the degree of ρ is at least M+1.
Definition 15. If R(x) is the polynomial R(x) = ∑

q
i=0 rixi = rq ·

∏
q
j=1(x− ρ j), where the ρ j’s are the roots of the polynomial,

its Mahler measure is defined as

M(R) = |rq| ·
q

∏
j=1

max
{

1, |ρ j|
}
.

The Mahler measure of an algebraic number is defined to be the
Mahler measure of its minimal polynomial. ♦

The Mahler measure of an algebraic number is a measure of
its “algebraic complexity”, as it is related to the size of the
coefficients of the minimal polynomial, like we show in eq. (8).
Definition 16. The i− th symmetric polynomial in q variables
is

σi(x1, . . . ,xq) = ∑
1≤ j1≤...≤ jq

x j1 · . . . · x jq . ♦

Since ri, the i-th coefficient of a minimal polynomial, is equal
to rq multiplied by the i-th symmetric polynomial of the ρ j,
which is made of precisely

(q
i

)
monomials in the ρi where each

ρi appears with degree at most 1, we have that ri is sum of(q
i

)
terms each ≤M(A) in absolute value, and consequently



|ri| ≤
(q

i

)
·M(R), for 0 ≤ i ≤ q. Then we immediately

obtain

max
0≤i≤q

|ri| ≤
(

q
[q/2]

)
·M(R). (8)

3. UNIDIMESIONAL SYSTEMS

Unidimensional systems assume the following form, from (2):{
x(k+1) = ax(k)+u(k)
y(k) = bx(k)c, (9)

where x(k) ∈ R, y(k) ∈ Z, u(k) ∈U ⊂ R, and a ∈ R.

We now state results about estimates for ε(a), which will be
fundamental in the proofs of finiteness theorems asserting the
equivalence between ULI and ULDI.
Theorem 3. Dubbini [2009]

• If a is trascendental, then ε(a) = 0;
• If a= p

q ∈Q, with gcd(p,q)= 1, then ε(a)≤min{ 1
|p| ,

1
|q|};

• If a∈R is algebraic of degree K with minimal polynomial
Pa(x), then

ε(a)≤min
{

1
M(Pa(x/2))

,
1

M(2−KPa(2x))

}
♦

Theorem 4. Consider the unidimensional system system (9).

• If a is trascendental, ULI ⇔ ULDε I for every ε ≥ 0;
• If a= p

q ∈Q, with gcd(p,q) = 1, then ULI implies ULDε I
for every ε ≥min{ 1

|p| ,
1
|q|};

• If a is algebraic of degree K with minimal polynomial
Pa(x), then ULI implies ULDε I for every

ε ≥ const(K) ·min
{

1
|αi|

: i = 1, . . . ,K
}
,

where const(K)≤mini=1,...,K

{
(K

i )2min{i,K−i}

|αi|

}
.

Proof: As to the trascendental and rational case, the thesis of the
Theorem follows immediately from Theorem 3, and Proposi-
tion 1. In the algebraic statement, first note that in the Theorem
3 the two terms M(Pa(x/2)) and 2−KM(Pa(2x)) are the Mahler
measures of respectively the polynomial 2−KαKxK + · · · +
2−1α1x + α0, and the polynomial αKxK + · · ·+ 2−K+1α1x +
2−Kα0. Moreover by (8) it holds

2−i|αi| ≤
(

K
i

)
M(Pa(x/2)) ,

2−K+i|αi| ≤
(

K
i

)
M(Pa(2x)) .

The Theorem follows now immediately from Proposition 1. ♦
We now state the main result about unidimensional system,
which allows to check uniform left invertibility with an al-
gorithmic procedure (i.e. checking ULDI), except for a finite
number of cases.
Theorem 5. (Finiteness unidimensional Theorem). Consider the
unidimensional system (9), and fix the input set U ⊂ R. Then,
for every ε > 0, the set of a ∈ R of degree at most K (for any
K ∈ N) for which ULDε I is not equivalent to ULI is finite.

Proof: Fix an ε > 0. Consider the periodic trajectory of order 2

of the difference system given by
{

ax1 + v = x2
ax2− v = x1

. This system

of equation has the solution x1 =
−v

a+1 ,x2 =
v

a+1 . If

Figure 1. The set Q (formed by the squares) and the set Qε (the dashed
“strip”) are shown in the case of the unidimensional system (9): Propo-
sition 1 means that a trajectory inside Qε(a) = {[−1+ ε(a),1− ε(a)]+
(t, t) : t ∈ R} imples the existence of a trajectory inside Q.

min
06=v∈V

|v|< (a+1)(1− ε) (10)

the periodic trajectory (x1,x2,x1,x2,x1, . . .) lies in ]−1+ε,1−
ε[ and the system is not ULDε I. Theorem 3 implies that (since
the degree K is fixed) all but a finite number of a ∈ R satisfy

ε(a)< ε. (11)

• Suppose that the system (9) is not ULDε I. Then it is not
ULDε(a)I every time that (11) holds, and it holds for all
but a finite number of a’s. By Proposition 1 the system is
then not ULI. We have thus proved that ULI ⇒ ULDε I
except for a finite number of a’s.

• Suppose now that for a particular a ∈ R the system (9) is
ULI but not ULDε I. Following the the derivation of (10),
it must be

(a+1)(1− ε(a))< min
06=v∈V

|v|< (a+1)(1− ε). (12)

Theorem 3 again implies that there are only a finite num-
ber of a such that (12) holds, so there are only a finite
number of a’s such that the system (9) is ULI but not
ULDε I. We have thus proved that ULDε I ⇒ ULI except
for a finite number of a’s. ♦

4. MISO SYSTEMS

Suppose that A has an eigenvalue λ ∈ C relative to an eigen-
vector w. Then also its complex conjugate λ is an eigenvalue,
relative to the eigenvector w: Aw = λw. Moreover, denoting
with Re(·) and Im(·) the real part and the imaginary part of a
complex number (or a vector, componentwise) it holds

wRe =
w+w

2
= Re(w), wIm =−i

w−w
2

= Im(w),

π1

(
AkwRe

)
= Re(λ k), π1

(
AkwIm

)
= Im(λ k).

The following Theorem provides a sufficient condition for the
equivalence of ULDI and ULI of a MISO system, only on the
base of the eigenvalues of the matrix A.
Theorem 6. Consider a MISO system of type (2). Define ε

to be the minimum of ε(λ ), with λ varying among the (also
complex) eigenvalues of A whose respective eigenvectors have
first component 6= 0. If the system is not ULDε I, then it is not
ULI.



Proof: Suppse that the system is not ULDε I. Then it has ar-
bitrary long trajectories of the doubled system in Qε . Note
that, if {X(k)}k∈N is such a trajectory, then also the trajectory
obtained considering the same input sequence and initial con-

dition X(0)+ t
(

wRe + τwIm
wRe + τwIm

)
, instead of X(0) (w eigenvector

of the matrix A), is included in Qε . In particular, assuming that
t varies in R, the trajectory assumes the form{(

x(0)+ t(wRe + τwIm)
x′(0)+ t(wRe + τwIm)

)
,

,

(
Ax(0)+At(wRe + τwIm)+u(0)

Ax′(0)+At(wRe + τwIm)+u′(0)

)
, . . . ,

...(
Akx(0)+Akt(wRe + τwIm)+ . . .+u(k−1)

Akx′(0)+Akt(wRe + τwIm)+ . . .+u′(k−1)

)
, . . .

}
=

{(
t(wRe + τwIm)
t(wRe + τwIm)

)
+ const(0), . . .

. . . ,

(
Akt(wRe + τwIm)

Akt(wRe + τwIm)

)
+ const(k), . . .

}
.

We are considering constants all the values that are not influ-
enced by t. The projection corresponding to component 1 and
d +1 of this trajectory is simply

=

{
t
(

1
1

)
+ const(0), . . . (13)

. . . , t

(Re(λ k)+ τIm(λ k)
)(

Re(λ k)+ τIm(λ k)
)+ const(k), . . .

 .

Now choose τ to be a trascendental number. If there are integer
linear relations among the component of (13), i.e.:

k

∑
i=1

li
[
Re(λ i)+ τIm(λ i) = 0

]
, li ∈ Z

then it must be
k

∑
i=1

liRe(λ i) = 0,
k

∑
i=1

liIm(λ i) = 0, (14)

because of the choice of a trascendental τ . Moreover equations
(14) hold if and only if the complex number λ satisfies the same
integer linear relation:

k

∑
i=1

liλ i = 0. (15)

The estimates given in Theorem 3 depend only on the coeffi-
cients of the minimal polynomial of an algebraic number, and
linear relations (14) are the same of (15). This implies that
ε

(
Re(λ k)+ τIm(λ k)

)
= ε(λ ), and that estimates given in the

Theorem 3 are valid considering the minimal polynomial of λ .
Therefore there exists a t ∈R such that the trajectory {X(k)}k∈N
satisfies Lemma 1 with ε = ε(λ ). This proves the Theorem,
since we can do the same for every eigenvalue λ , choosing the
one with minimum ε(λ ). ♦
Corollary 1. If the matrix A has a trascendental eigenvalue
with respective eigenvector having the first component 6= 0, the
system is ULDI if and only if it is ULI. ♦
Corollary 2. If the matrix A has an algebraic eigenvalue λ with
respective eigenvector having the first component 6= 0, and the
system is not ULDε(λ )I, then it is not ULI. ♦

5. AN EXAMPLE

Example 1. Consider the system
x(k+1) =

(
1 −1
3 2

)
x(k)+

(
1
1

)
u(k)

y(k) = bπ1x(k)c; U = {−3
5
,

3
5
},

(16)

The (complex) eigenvalues of the matrix A are 3±
√
−11

2 , given
by the characteristic, and minimal, polynomial λ 2−3λ +5= 0.
Moreover, both eigenvectors have non null first component.
Therefore we can apply Theorem 3 to conclude that

ε(A)≤ min
i=0,1,2

{
2 ·2b i

2 c

|αi|

}
=

2
5
,

where |αi| is the modulus of the i-th coefficient of the minimal
polynomial of the matrix A. We show that the system (16) is
not ULD 2

5
I, so that by Proposition 1 the system is not ULI. To

check ULD 2
5
I we applied the following algorithm:

(1) Compute the difference system, and the polytope

P0 =]−1+
2
5
,1− 2

5
[ × 〈e2〉;

(2) Compute the following sequence of polytopes, starting
from P0 and iterating:

P(k+1) = P0 ∩
⋃

vi∈U −U

A(P(k))+Bvi;

The polytope P(k) represents the set of possible states of
the difference system that are in ]− 1+ 2

5 ,1−
2
5 [ × 〈e2〉

after k steps.
(3) If P(k) is empty for some k, the system is ULD 2

5
I in time

k, since no state can be in ]− 1+ 2
5 ,1+

2
5 [ × 〈e2〉 after k

iterations. If P(k+1) = P(k) for some k then the system is
not ULD 2

5
I, since P(k) is an invariant set for the iterations

of the difference system relative to (16).

Note that this algorithm halts thanks to Theorem 1. Fig. 2 shows
the polytopes P(k) for k = 1,2,3,4. The system (16) is not
ULD 2

5
I, since P(4) is an invariant set for the difference system.

Applying Proposition 1 we conclude that the system is not ULI.
♦

6. CONCLUSIONS

In this paper we studied left invertibility of quantized MISO
linear systems. We proved that in unidimensional systems it
is equivalent, except for a finite number of cases, to left D-
invertibility, while for higher dimension MISO systems we
proved a sufficient condition for the equivalence between ULDI
and ULI, based on the eigenvalues of the system. Left D-
invertibility is easily (and algorithmically) checkable, so our
results allow in practice to check left invertibility of output-
quantized MISO linear systems with a computable procedure.
Algebraic conditions play a central role in the investigation
of left invertibility as well in other fields when a quantization
is introduced (Bicchi [1992], Chitour [2001]). Future research
will include investigation on the equivalence between left in-
vertibility and left D-invertibility in MIMO systems.



Figure 2. Polytopes of the difference system relative to (16) representing
states inside ]−1+ 2

5 ,1−
2
5 [ × 〈e2〉 (a) after 1 step, (b) after 2 steps, (c)

after 3 steps and (d) after 4 steps.
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