
Yarp Based Plugins for Gazebo Simulator

Enrico Mingo Hoffman, Istituto Italiano di Tecnologia, enrico.mingo@iit.it, Genova, Italy
Silvio Traversaro, Istituto Italiano di Tecnologia, silvio.traversaro@iit.it, Genova, Italy
Alessio Rocchi, Istituto Italiano di Tecnologia, alessio.rocchi@iit.it, Genova, Italy
Mirko Ferrati, Centro di Ricerca “E. Piaggio”, mirko.ferrati@centropiaggio.unipi.it, Pisa, Italy
Alessandro Settimi, Centro di Ricerca “E. Piaggio”, alessandro.settimi@centropiaggio.unipi.it, Pisa, Italy
Francesco Romano, Istituto Italiano di Tecnologia, francesco.romano@iit.it, Genova, Italy
Lorenzo Natale, Istituto Italiano di Tecnologia, lorenzo.natale@iit.it, Genova, Italy
Antonio Bicchi, Centro di Ricerca “E. Piaggio”, antonio.bicchi@centropiaggio.unipi.it, Pisa, Italy
Francesco Nori, Istituto Italiano di Tecnologia, francesco.nori@iit.it, Genova, Italy
Nikos G. Tsagarakis, Istituto Italiano di Tecnologia, nikos.tsagarakis@iit.it, Genova, Italy

The research leading to these results has received funding from the European Union Seventh Framework
Programme [FP7-ICT-2013-10] under grant agreements n.611832 WALKMAN, ERC Advanced Grant no. 291166
SoftHands and the CoDyCo project (FP7-ICT-2011-9, No. 600716).

Abstract

This paper presents a set of plugins for the Gazebo simulator that enables the interoperability between a
robot, controlled using the YARP framework, and Gazebo itself. Gazebo is an open-source simulator that can
handle different Dynamic Engines (ODE, DART, Bullet, SimBody), backed up by the Open Source Robotics
Foundation (OSRF) and supported by a very large community. Since our plugins conform with the YARP layer
used on the real robot, applications written for our robots, COMAN and iCub, can be run on the simulator
with no changes. Our plugins have two main components: a YARP interface with the same API as the real
robot interface, and a Gazebo plugin which handles simulated joints, encoders, IMUs, force/torque sensors and
synchronization. The robot model is provided to the simulator by means of an SDF file, which describes all
the geometric, dynamic and visual characteristics of a robot. Once the SDF is read from Gazebo, our plugins
are loaded and associated with the simulated robot model and the simulated world. Different modules for
COMAN and iCub have been developed using Gazebo and our plugins as a testbed: joint impedance control plus
gravity compensation, dual arm Cartesian control for manipulation tasks, dynamic walking, etc. This work has
been developed as part of a joint effort between three different European Projects “WALKMAN”, “CoDyCo”
and “SoftHands” aiming at implementing a common simulation platform to develop and test algorithms for
our robotic platforms. This work is available as open-source to all the researchers in the YARP community
(https://github.com/robotology/gazebo_yarp_plugins).

Keywords: Simulator, Robotics, YARP, Gazebo, Open-Source

1 Introduction

In the past years, robotics researchers have been de-
veloping many robotics frameworks such as OpenRDK
(Calisi et al. [2008]), YARP (Metta et al. [2006]) or
ROS (Quigley et al. [2009]) in order to ease the cre-
ation of generic applications for robots and encourage
code reuse. The performance overhead introduced by
these frameworks is balanced by the architectural ben-
efits, for example they allow to build modular systems
to execute one or more assigned tasks.

In these frameworks, the simulator is a module that
represents the real robot at the interface level (Fig-
ure 1). Such simulator module accepts control input

(desired joint torques, desired joint position, ...) and
outputs sensory feedback (cameras, joint positions, ...)
from the simulated world. These simulators usually
allow to have the human in-the-loop permitting to
train a human operator. The most important aspect is
that they allow to develop modules that directly will
work in the real robot without any need to rewrite
code. In fact, when the real robot is used, there is a
module that replaces the simulator by providing the
same hardware interfaces.

By accurately simulating robots and environments,
code designed to operate on a real robot can be
executed and validated on the simulated equivalent
system. This avoids common problems associated with



(a) Module A connected to the simulator

(b) Module A connected to the robot

Figure 1: Module A write desired joint position
and read actual joint position without knowing if it is
interfaced with the simulator or the robot since they
expose the same interface.

hardware such as short battery life, hardware failures,
and unexpected and dangerous behaviors, particularly
during the initial stages of development and tuning of
new modules and controllers. It is also much faster to
have a simulation engine up and running than using a
real robot, especially when the simulation engine can
run faster than real-time. In this way the simulator
becomes a fundamental part of the framework and
the robot software development cycle as the first step
to validate algorithms, thus minimizing the risks of
hardware breaks.

Figure 2: COMAN and iCub interacting inside a
Gazebo simulation of a kitchen. Blue dots represent
contact points.

With these concepts in mind we decided to extend
one of the most known robotics simulator, Gazebo
(Koenig and Howard [2004]), to be compatible with

one of the most used robotics framework, YARP (Fig-
ure 2), developed in the Italian Institute of Technology.
YARP is supported by the iCub simulator (iCubSim,
Tikhanoff et al. [2008]) that is dedicated to a spe-
cific platform. The needs of a more generic tool for
simulating different robots rise up. Gazebo, which has
been recently chosen as the simulator for the DARPA
Virtual Robotic Challenge (VRC, DARPA [2013]), al-
lows the use of different dynamic engines, it is easily
expandable through plugins and it has a strong and
active community. Gazebo is maintained by the Open
Source Robotics Foundation (OSRF [2011]).

This paper is organized in the following sections: State
of Art, discusses some of the most popular simulation
environments in robotics, Structure introduces in
detail the Gazebo plugins developed in this work,
Conclusions summarize the outcome of this effort
and finally Future Works discusses the follow up
activities.

2 State of Art

A large number of simulators have been developed
in the past two decades (Ivaldi et al. [2014]). Such
simulators range from dynamic solver libraries to com-
plex simulation environments/systems. The latter are
usually large projects that provide both rigid body dy-
namic simulations and tools such as graphical editors,
planner libraries, visualization tools, controllers and so
on.

The Open Dynamics Engine (ODE, Smith [2000]) is
one of the most widely used rigid body dynamics
engine in robotics simulation. ODE simulates chains
of rigid bodies connected and constrained by differ-
ent types of joints. It has a built-in collision detec-
tion system and implements hard contacts using non-
penetration constraint whenever two bodies collide.
Beside the large number of project that use it, at the
moment the development has been paused. Bullet (Er-
win [2003]) is another dynamic engine. It implements
different direct/inverse rigid body dynamic algorithms
(eg. Featherstone articulated body algorithm, Feath-
erstone [2007]) as well as different solvers (eg. Mixed
Linear Complementarity Problem, MLCP) and con-
tact models. Bullet is used for a wide range of projects
and its community is active and continues to improve
it constantly.

OpenRAVE (Diankov [2010]) provides an environment
for testing, developing, and deploying motion planning
algorithms in real-world robotics applications. The
main focus is on simulation and analysis of kinematic
and geometric information related to motion planning.
It provides many command line tools to work with
robots and planners, and the run-time core is small
enough to be used inside controllers and bigger frame-
works. Industrial robotics automation is an important
target application.



Webots (Michel [2004]) is a development environment
used to model, program and simulate mobile robots.
With Webots the user can design complex robotic
setups, with one or several, similar or different robots,
in a shared environment. A large choice of simulated
sensors and actuators is available. The robot con-
trollers can be programmed with the built-in IDE or
with third party development environments. The robot
behavior can be tested in dynamic simulated worlds
(ODE based). The controller programs can optionally
be transferred to commercially available real robots.

V-REP (Rohmer et al. [2013]), similarly to Webots,
embeds different tools that permit fast developing of
algorithms, the code can be transferred inside real
robotic hardware.

Gazebo (Koenig and Howard [2004]) is a multi-robot
simulator for outdoor environments. As Stage (part of
the Player project, Gerkey et al. [2003]), it is capable
of simulating a population of robots, sensors and ob-
jects. It generates both realistic sensor feedback and
physically consistent interactions between objects. It
includes an accurate simulation of rigid-body physics
and allows the user to select between multiple dynam-
ics engines (ODE, Bullet, SimBody Sherman et al.
[2011] and DART Tech [2013]). Gazebo has been used
to compare algorithms for navigation and grasping in
a controlled environment.

Finally, two notable softwares are the OpenHRP
project used in Japan for the HRP series (Kanehiro
et al. [2004]) and MuJoCo (Todorov et al. [2012]) used
for model-based control.

Our decision to add a YARP interface to Gazebo is
motivated by the following considerations. We want
to switch between fast, not accurate simulations and
slow, accurate ones, thus we need the capability of
choosing among different dynamic engines. We also
want a simulator which is both easy to use and to
expand in order to add new robot models. Finally,
we prefer an open-source software with an active
community and money investments. Gazebo fulfills our
requirements, in particular it is expandable with a
plugin structure: in this work our YARP interface is a
collection of Gazebo plugins.

3 Structure

It is useful to understand Gazebo plugins and YARP
device drivers before describing the structure of our
plugins (from now on gazebo yarp plugins).

Gazebo plugins are C++ classes that extend the
functionalities of Gazebo, while YARP device drivers
are C++ classes used in YARP for abstracting the
functionality of robot devices. Usually, each class of
gazebo yarp plugins embeds a YARP device driver in
a Gazebo plugin.

3.1 Gazebo Plugins

A plugin is a piece of code compiled as a shared
library and inserted into the simulator. A plugin has
direct access to all the functionalities of Gazebo from
the physics engine to the simulated world. Further-
more, plugins are self-contained routines that are eas-
ily shared and can be inserted and removed from a run-
ning system. There are 4 types of plugins in Gazebo:
world, model and sensor plugins are attached to
and control a specific simulated world/model/sensor
respectively, while system plugin is specified on the
command line and loads during the Gazebo startup.

3.2 YARP Device Drivers

In YARP, a device driver is a class that implements one
or more interfaces. There are three separate concerns
related to devices in YARP:

• Implementing specific drivers for particular de-
vices

• Defining interfaces for device families
• Implementing network wrappers for interfaces

For example the Control Board device driver imple-
ments a set of interfaces that are used to control
the robot (IPositionControl, ITorqueControl, etc.) and
another set of interfaces to read data from the motors
(IEncoders, etc).

3.3 Gazebo-YARP Plugins

The gazebo yarp plugins is made of:

• Gazebo plugins that instantiate YARP device
drivers,

• YARP device drivers that wrap Gazebo function-
alities inside the YARP device interfaces.

The plugins/devices already implemented are the Con-
trol Board, 6-axis Force Torque sensor, Inertial Mea-
surement Unit (IMU) and a Clock plugin used for
synchronization. The first three plugins are directly
related to the simulated objects and sensors, while the
last one is a system plugin that synchronizes all the
other YARP modules with the simulation time.

3.3.1 Control Board

The Control Board plugin allows to control the robot
using YARP Interfaces, it is implemented as a Gazebo
Model plugin. Every control board allows the user to
control one or more joints (a kinematic chain such as
the arm or leg, etc.) as specified in a configuration
file. For each controlled joint the control board opens
different interfaces, permitting the use of different type
of controllers for each joint. Such interfaces include po-
sition control, torque control, encoders reading, torque



(a) Gazebo interface with COMAN

(b) A yarpscope showing on-line the forces and the torques at

each Force/Torque sensor

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

30

35

40
Forces Right Arm

ms

N

(c) Plot of forces measured at the Force/Torque sensor placed

on the right arm (data logged during simulation). Forces along

x,y and z are respectively in red, green and blue

0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Torques Right Arm

ms

N
m

(d) Plot of torques measured at the Force/Torque sensor placed

on the right arm (data logged during simulation). Torques

along x,y and z are respectively in red, green and blue

Figure 3: A Gazebo simulation running COMAN
interacting with a debris

measurement and joint impedance control. Usually the
number of instantiated control boards is equal to the
number of kinematic chains. Each control board, dur-
ing every cycle of simulation, reads position, velocity
and torque values from the simulated joints and sends
desired joints position or torques to the simulator.
The values read from the simulator are broadcasted
through YARP interfaces in the YARP network, in a
similar way the desired joint values come from YARP
interfaces (Figure 4). The following YARP interfaces
are used to control the robot.

• IPositionControl: a position control with a lin-
ear trajectory generator considering a max joint
speed

• IPositionDirect: a position control using Gazebo
position PIDs

• ITorqueControl: a perfect torque follower
• IImpedanceControl: a joint impedance control

with the following law

τd = −Pd(q − qd)−Ddq̇ + τoffset (1)

where qd is the desired equilibrium position, Pd is
the desired joint stiffness and Dd is the desired
joint damping. τoffset is an extra signal that
can be used for gravity compensation or inverse
dynamics control.

Furthermore, the Control Board implements the ICon-
trolMode interface that allows to change the type of
controller online. All these interfaces are also available
on the robot and they have the same behaviour.

Figure 4: Control Board plugin for the left arm
kinematic chain. yarp::IPositionControl interface has
a method positionMove() that can be used to set joint
values inside a YARP module. The plugin implements
such interface by calling the Publish() method inside
the Gazebo API to move the simulated joints at each
OnUpdate().

3.3.2 6-axis Force/Torque sensor

A Force/Torque sensor measures a wrench in the robot
structure (Figure 3). The sensor, at the time of writing,
is simulated in Gazebo as if it was attached to the



reference frame associated to a joint. On the YARP
side, the reading of a generic sensor is implemented
as a IAnalogSensor interface (Figure 5). The broad-
casted data is a vector of six numbers representing the
forces and the torques applied on that reference frame.

3.3.3 IMU sensor

An IMU measures velocity, orientation, and gravita-
tional forces, using a combination of accelerometers
and gyroscopes, of the link where it is placed. It is also
possible to add white Gaussian noise on the measure-
ment (Figure 7). Similar to the Force/Torque sensor,
it is implemented as a IAnalogSensor interface.

Figure 5: The Force/Torque sensor in the left arm is
implemented as a YARP IAnalogSensor interface. At
every step the internal state of the plugin is updated
with the last readings of forces and torques from the
simulation.

3.3.4 Clock

A fundamental aspect in simulations is the synchro-
nization between YARP modules and the simulated
robot. A YARP module is a process in which one
or more threads are started. When such modules are
used in the real robot, the thread rate is timed by
the machine (system) clock, also called the wall clock.
When the simulation is running we want the rate of
such modules to be synchronized with the simulated
time, otherwise the control loop could run faster or
slower with respect to the simulated robot dynamics.
The real-time factor (RTF ) of the simulation is given
by

RTF = update frequency × step time (2)

and is kept to one when the desired update frequency
is the inverse of the time increased at each step in the

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

thread loop cycles

t e
la

p
s
e
d
 [
s
]

 

 

Thread Rate in Wall Clock Time

Thread Rate in Simulation Clock Time

Figure 6: Time elapsed between each execution of
the control loop, measured in simulation clock time
and in wall clock time. Desired thread rate is 1kHz
and simulation time step is 1ms

simulation. For instance if the simulation runs with a
real time factor of 0.1, 10 seconds are needed to simu-
late 1 real second. Within this situation, the controller
process should also be slowed down 10 times to be
coherent with the simulation. To solve this issue we de-
veloped a clock plugin that synchronizes modules with
the simulated time. The clock plugin is implemented
as a System plugin and publishes on a YARP port
the time information from the simulator. For every
simulation step, the simulation time is incremented
and the timestamp is sent via socket. All the YARP
threads implemented as control threads (which need
to be run at a desired rate, i.e. YARP’s RFModule or
RateThread) are automatically synchronized using the
simulation clock if the YARP CLOCK environment
variables is set, or if the module explicitly asks to.
The yarp::os::Time functionalities are also transpar-
ently working using the wall-clock or the simulation
clock depending on the environment variable. Thread
sleeps are performed using the right wall or simulated
time. When synchronized with the simulation clock
the yarp::os::Time delay does not explicitly sleep on
a wall clock, rather a scheduler is synchronized with
the simulation clock by performing blocking reads on
the YARP CLOCK port. This scheduler wakes up
the threads that required a delay just once, when
they have slept for the desired duration. Compared
to the ROS::Time implementation which uses small
sleeps on wall clock to check synchronization with
the simulated clock, this allows to run simulations
both slower and faster than real time and still have
synchronization between threads and controls. In any
case, when accessing the simulated clock Experiments
showed the approach to be successful in synchronizing
1kHz control loops against simulations running 1kHz,
thus having a 1ms clock granularity.

3.3.5 Simulation Description Format (SDF)

Gazebo uses an XML-style format, Simulation De-
scription Format (SDF), to save and load information



(a) Gazebo interface with iCub

(b) A yarpscope showing on-line the acceleration measured by

the simulated IMU along z

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4

6

8

10

12

Accelerations measured IMU

ms

m
/s

2

(c) Plot of accelerations measured by the IMU (data logged

during simulation). Accelerations along x,y and z are respec-

tively in red, green and blue

Figure 7: iCub inside Gazebo.

about a simulated world or model. An SDF encap-
sulates all the necessary information for a simulation
such as:

• Scene: ambient lighting, sky properties, shadows.
• Physics: gravity, time step, physics engine.
• Models: collection of links, collision objects,

joints, and sensors.
• Lights: point, spot, and directional light sources.
• Plugins: world, model, sensor, and system plug-

ins.

Our Control Board, Force Torque sensor and IMU
plugins are included inside the SDF file that de-
scribes our robots. For our humanoid bipedal robot,
COMAN, we have five Control Board plugins (one

for each kinematic chain), four Force/Torque sensor
plugins (two in the legs and two in the arms) and
one IMU sensor plugin (placed on the back of the
waist). The SDF descriptions of COMAN and iCub
are available in https://github.com/EnricoMingo/

iit-coman-ros-pkg and in https://github.com/

robotology-playground/icub_gazebo respectively.
The clock plugin is loaded trough a command line
parameter when the simulator is started.

4 Conclusions

In this work we have presented a set of Gazebo plugins,
named gazebo yarp plugins, that allow to connect the
robotics framework YARP to Gazebo itself. Gazebo
was chosen since it is easy to use, it has the possibility
to switch between different rigid multi-body dynamics
engines, it is Open-Source and has an active commu-
nity. Our plugins are based on YARP device drivers
in order to have exactly the same interfaces in the
real and simulated robot. This allows to write modules
that will work both in the simulator and in the real
robot without the need to change the code. This is
a very important paradigm in robotics research and
develop since it minimizes the presence of errors due
to code porting. Furthermore the simulator becomes a
tool that helps the developer in testing and validation
before using the real platform. Such plugins consist in:
a Control Board plugin to control the robot, a Force
Torque sensor plugin and an IMU plugin. A special
plugin dedicated to synchronization between modules
and simulator was also implemented. The plugins were
tested to simulate two humanoid bipedal robots, the
COMAN and the iCub, both from the Italian Institute
of Technology.

5 Future Works

Gazebo yarp plugins is a project at an early stage that
is gaining more and more interest inside the YARP
community. Beside the good results obtained up to
now, some works are still missing in order to be able
to have 100% compatibility with all the Gazebo func-
tions. Furthermore we still need to implement plugins
to connect YARP device drivers dedicated to cameras
and RGB-D sensors to the simulated ones in Gazebo.
We are also interested in multi-robot and human-robot
simulation: we already have the possibility to easily
simulate different robot models but it is still difficult
to simulate multiple instances of the same robot. Fur-
thermore, since our robots in IIT have flexible joints,
we are investigating on how to simulate flexible joints
without specifying extra joints/links inside the SDF of
the robot. Finally we are planning an official release of
our plugins inside the Gazebo community.

https://github.com/EnricoMingo/iit-coman-ros-pkg
https://github.com/EnricoMingo/iit-coman-ros-pkg
https://github.com/robotology-playground/icub_gazebo
https://github.com/robotology-playground/icub_gazebo


References

D. Calisi, A. Censi, L. Iocchi, and D. Nardi. Open-
RDK: a modular framework for robotic software
development. In Proceedings of International Con-
ference on Intelligent Robots and Systems (IROS),
pages 1872–1877, September 2008. ISBN 978-1-
4244-2057-5. doi: 10.1109/IROS.2008.4651213.

DARPA. Darpa robotics challenge, 2013. URL http:

//www.theroboticschallenge.org/.
Rosen Diankov. Automated Construction of Robotic
Manipulation Programs. PhD thesis, Carnegie Mel-
lon University, Robotics Institute, August 2010.

Coumans Erwin. Bullet, 2003. URL http://www.

bulletphysics.org/.
Roy Featherstone. Rigid Body Dynamics Algorithms.

Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007. ISBN 0387743146.

Brian P. Gerkey, Richard T. Vaughan, and Andrew
Howard. The player/stage project: Tools for multi-
robot and distributed sensor systems. In In Pro-
ceedings of the 11th International Conference on
Advanced Robotics, pages 317–323, 2003.

Serena Ivaldi, Vincent Padois, and Francesco Nori.
Tools for dynamics simulation of robots: a survey
based on user feedback. CoRR, abs/1402.7050, 2014.

Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Ka-
jita. Openhrp: Open architecture humanoid robotics
platform. I. J. Robotic Res., 23(2):155–165, 2004.

Nathan Koenig and Andrew Howard. Design and
use paradigms for gazebo, an open-source multi-
robot simulator. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 3, pages 2149–
2154, 2004.

G. Metta, P. Fitzpatrick, and L. Natale. Yarp: Yet
another robot platform. International Journal of
Advanced Robotics Systems, special issue on Soft-
ware Development and Integration in Robotics, 3(1),
2006.

Olivier Michel. Cyberbotics ltd. webots tm : Pro-
fessional mobile robot simulation. Int. Journal of
Advanced Robotic Systems, 1:39–42, 2004.

OSRF. Open source robotics foundation, 2011. URL
http://osrfoundation.org/.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y. Ng. Ros: an open-source robot
operating system. In ICRA Workshop on Open
Source Software, 2009.

Eric Rohmer, Surya P. N. Singh, and Marc Freese.
V-rep: A versatile and scalable robot simulation
framework. In IROS, pages 1321–1326. IEEE, 2013.

Michael A. Sherman, Ajay Seth, and Scott L. Delp.
Simbody: multibody dynamics for biomedical re-
search. Procedia {IUTAM}, 2(0):241 – 261, 2011.
ISSN 2210-9838.

Russel Smith. Open dynamic engine, 2000. URL
http://www.ode.org/.

Georgia Tech. Dart, 2013. URL http://dartsim.

github.io/.
V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta,

L. Natale, and F. Nori. An open-source simulator
for cognitive robotics research: The prototype of
the icub humanoid robot simulator. In Proceedings
of the 8th Workshop on Performance Metrics for
Intelligent Systems, PerMIS ’08, pages 57–61, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-
293-1. doi: 10.1145/1774674.1774684. URL http://

doi.acm.org/10.1145/1774674.1774684.
Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-

joco: A physics engine for model-based control. In
IROS, pages 5026–5033. IEEE, 2012. ISBN 978-1-
4673-1737-5.

http://www.theroboticschallenge.org/
http://www.theroboticschallenge.org/
http://www.bulletphysics.org/
http://www.bulletphysics.org/
http://osrfoundation.org/
http://www.ode.org/
http://dartsim.github.io/
http://dartsim.github.io/
http://doi.acm.org/10.1145/1774674.1774684
http://doi.acm.org/10.1145/1774674.1774684

	Introduction
	State of Art
	Structure
	Gazebo Plugins
	YARP Device Drivers
	Gazebo-YARP Plugins

	Conclusions
	Future Works

